INDEPENDENT RESTRICTED DOMINATION AND THE LINE DIGRAPH

P. DELGADO-ESCALANTE*, H. GALEANA-SÁNCHEZ AND L. PASTRANA RAMÍREZ
Instituto de Matemáticas
U.N.A.M. Área de la investigación científica. Circuito Exterior
e-mail: pietra@matem.unam.mx, hgaleana@matem.unam.mx, lau@servidor.unam.mx

Communicated by: T.W. Haynes
Received 08 November 2010; revised 24 October 2011; accepted 21 November 2011

Abstract

Let H be a digraph possibly with loops and let D be a digraph whose arcs are colored with the vertices of H (an H-colored digraph). A walk (path) P in D will be called an H-restricted walk (path) if the colors displayed on the arcs of P form a walk in H. An H-restricted kernel N is a set of vertices of D such that for every two different vertices in N there is no H-restricted path in D joining them, and for every vertex x in $V(D) \setminus N$ there exists an H-restricted path in D from x to N.

For the line digraph of D we consider its inner arc-coloration, defined as follows: If h is an arc of D with color c then any arc of the form (x,h) in $L(D)$ also has color c.

We prove that the number of H-restricted kernels in an H-colored digraph is equal to the number of H-restricted kernels in the inner coloration of its line digraph.

Keywords: Domination, arc-coloration, kernel, line digraph.

2010 Mathematics Subject Classification: 05C20, 05C38, 05C69.

*Research of Delgado-Escalante supported by CoNaCyT grant No.170157