Signed reinforcement numbers of certain graphs

Ning Li, Xinmin Hou†, Jing Chen and Jun-Ming Xu
Department of Mathematics
University of Science and Technology of China
Hefei, Anhui, 230026, China.
e-mail: lning@mail.ustc.edu.cn, xmhou@ustc.edu.cn, ccxxhh@mail.ustc.edu.cn, xujm@ustc.edu.cn

Communicated by: T.W. Haynes
Received 07 November 2011; accepted 01 March 2012

Abstract

Let G be a graph with vertex set $V(G)$. A function $f: V(G) \rightarrow \{-1, 1\}$ is a signed dominating function of G if, for each vertex of G, the sum of the values of its neighbors and itself is positive. The signed domination number of a graph G, denoted $\gamma_s(G)$, is the minimum value of $\sum_{v \in V(G)} f(v)$ over all the signed dominating functions f of G. The signed reinforcement number of G, denoted $R_s(G)$, is defined to be the minimum cardinality $|S|$ of a set S of edges such that $\gamma_s(G + S) < \gamma_s(G)$. In this paper, we initialize the study of signed reinforcement number and determine the exact values of $R_s(G)$ for several classes of graphs.

Keywords: Signed domination, signed reinforcement number.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

Let $G = (V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The open neighborhood, the closed neighborhood and the degree of $v \in V(G)$ are defined by $N_G(v) = \{u \in V(G) \mid uv \in E(G)\}$, $N_G[v] = N_G(v) \cup \{v\}$ and $d_G(v) = |N_G(v)|$, respectively. For $S \subseteq V(G)$, $N_G(S)$ is defined to be the union of the open neighborhoods $N_G(v)$ for all $v \in S$ and $N_G[S] = N_G(S) \cup S$. Let $\Delta(G)$ denote the maximum degree of a graph G. A vertex of degree one in G is called a leaf; a support vertex of G is a vertex adjacent with a leaf of G. Let $L(G)$ and $S(G)$ denote the set of leaves of G and the set of support vertices of G, respectively. For two sets $A, B \subseteq V(G)$, let $E(A, B) = \{e = xy \mid x \in A, y \in B\}$ and $e(A, B) = |E(A, B)|$.

Let $G = (V, E)$ be a graph and $f: V \rightarrow R$ is a real-valued function on V. The weight of f is $\omega(f) = \sum_{v \in V} f(v)$. For $S \subseteq V$, define $f(S) = \sum_{v \in S} f(v)$. Then $\omega(f) = f(V)$.

*The work was supported by NNSF of China and the Fundamental Research Funds for the Central Universities.

†corresponding author
For any \(v \in V \), let \(f[v] = f(N[v]) \) for notation convenience. A function \(f: V \rightarrow \{-1, 1\} \) is called a signed dominating function (abbreviated by SDF) if \(f[v] \geq 1 \) for all \(v \in V \). The signed domination number of \(G \) is \(\gamma_s(G) = \min \{ \omega(f) \mid f \text{ is a SDF of } G \} \). A \(\gamma_s(G) \)-function is a signed dominating function of \(G \) of weight \(\gamma_s(G) \). Signed domination was first introduced by Dunbar et al. in [4] and further studied in [1, 3, 6, 7, 9, 14, 10, 11, 12, 13, 15].

The reinforcement number of a graph \(G \) is a measurement of the stability of the domination in \(G \). The reinforcement number of a graph \(G \) is the smallest number of edges which must be added to \(G \) to decrease the domination number of \(G \) (the classic domination number of a graph \(G \) is the minimum cardinality of a subset \(D \) of \(V(G) \) such that for each \(v \in V(G), N[v] \cap D \neq \emptyset \)). The definition was first introduced by Kok and Mynhardt [8]. During the past twenty years, the reinforcement number associated with domination parameters were studied in literatures, for example, Ghoshal et al. [5] defined and studied the reinforcement number associated with the strong domination number; Gayla et al. [2] studied the reinforcement number associated with the fractional domination number.

In this paper, we define the signed reinforcement number of a graph \(G \), denoted \(R_s(G) \), to be the minimum cardinality of a set \(S \) of edges in the complement graph \(G^c \) of \(G \) such that \(\gamma_s(G + S) < \gamma_s(G) \). A minimum edge set \(S \subseteq E(G^c) \) with \(\gamma_s(G + S) < \gamma_s(G) \) is called a signed reinforcement set of \(G \). Note that the signed reinforcement set of a graph \(G \) may not exist, for example, for \(K_n \), the complete graph on \(n \) vertices or \(C_4 \), the cycle on 4 vertices. So if the signed reinforcement set of a graph \(G \) doesn’t exist, we define \(R_s(G) = 0 \).

The paper is organized as follows. Section 2 gives some lemmas about signed domination numbers and signed reinforcement numbers. Sections 3 and 4 determine the exact values of the signed reinforcement numbers of paths, cycles and wheels. Section 5 gives a sharp bound of the signed reinforcement number of trees.

2. Lemmas

In this section, we will give some useful lemmas about signed dominating functions of a graph \(G \). Let \(K_n, P_n \) and \(C_n \) denote a complete graph, a path and a cycle on \(n \) vertices, respectively. The following lemmas are given in [4] and the proof of them can be found in [4].

Lemma 2.1. [4] A signed dominating function \(f \) on a graph \(G \) is minimal if and only if for every vertex \(v \in V \) with \(f(v) = 1 \), there exists a vertex \(u \in N[v] \) with \(f[u] \in \{1, 2\} \).

Lemma 2.2. [4] If \(f \) is a signed dominating function of a graph \(G \), then \(f(v) = 1 \) for any \(v \in L(G) \cup S(G) \).

Lemma 2.3. [4] Let \(G \) be a graph on \(n \) vertices. Then \(\gamma_s(G) = n \) if and only if \(V(G) = L(G) \cup S(G) \).

Lemma 2.4. [4] If \(G \) has more than three vertices and maximum degree \(\Delta \leq 3 \), then \(\gamma_s(G) \geq \frac{n}{3} \).
The following lemma gives a lower bound for the signed domination number of a graph \(G \) with precisely one vertex with maximum degree four.

Lemma 2.5. Let \(G \) be a graph with order \(n \) and maximum degree four. If \(G \) has precisely one vertex with maximum degree four, then \(\gamma_s(G) \geq \frac{n-2}{3} \).

Proof. Let \(f \) be a \(\gamma_s \)-function and let \(P \) and \(M \) be the reverse images of +1 and -1 under \(f \). Then \(|P| + |M| = n \) and \(\gamma_s(G) = |P| - |M| \).

If \(M = \emptyset \), then \(\gamma_s(G) = n > \frac{n-2}{3} \).

If \(M \neq \emptyset \), we evaluate the number, \(e(M, P)_s \), of edges between \(P \) and \(M \) in \(G \).

For any \(v \in M \), to guarantee \(f[v] \geq 1 \), there exist at least two edges from \(v \) to \(P \), which means that \(e(M, P)_s \geq 2|M| \).

On the other hand, for each \(v \in P \), to guarantee \(f[v] \geq 1 \), \(|N(v) \cap M| \leq |N(v) \cap P| \).

Hence there are at most \(\frac{d(v)}{2} \) edges from \(v \) to \(M \). Since \(G \) has precisely one vertex with maximum degree four, \(e(M, P)_s \leq |P| - 1 + 2 = |P| + 1 \).

Hence, \(2|M| \leq e(M, P) \leq |P| + 1 \). Combine with \(|P| + |M| = n\), we have \(|M| \leq \frac{n+1}{3}\) and \(|P| \geq \frac{2n-1}{3}\). So, \(\gamma_s(G) = |P| - |M| \geq \frac{2n-1}{3} - \frac{n+1}{3} = \frac{n-2}{3} \). \(\square \)

The signed domination numbers of paths, cycles and stars were given in \([4]\).

Lemma 2.6. \([4]\)

1. \(\gamma_s(K_{1,n-1}) = n, n \geq 2; \)
2. \(\gamma_s(P_n) = n - 2\lfloor \frac{n-2}{3} \rfloor, n \geq 2; \)
3. \(\gamma_s(C_n) = n - 2\lfloor \frac{n}{2} \rfloor, n \geq 3. \)

Lemma 2.7. Let \(G \) be a connected graph with \(|V(G)| \geq 3\). If \(\gamma_s(G) = |V(G)| \), then \(R_s(G) = 1 \).

Proof. Since \(\gamma_s(G) = |V(G)| \), by Lemma 2.3, \(V(G) = L(G) \cup S(G) \). Let \(f \) be a \(\gamma_s \)-function.

Since \(\gamma_s(G) = |V(G)| \), \(f \equiv 1 \). Since \(|V(G)| \geq 3 \), \(|L(G)| \geq 2 \). Let \(u, v \in L(G) \) and \(w \) be the support vertex of \(u \). Since \(f \equiv 1 \), \(f[w] \geq 3 \). Then if we replace the value 1 by –1 on \(u \) and adding the edge \(uv \) to \(G \), then the reduced function is a SDF of \(G + uv \) with weight \(|V(G)| - 2 < \gamma_s(G) \). So \(R_s(G) = 1 \). \(\square \)

Lemma 2.8. For any graph \(G \), if \(\gamma_s(G + A) < \gamma_s(G) \) for some set \(A \subseteq E(G^c) \), then \(\gamma_s(G + A) \leq \gamma_s(G) - 2 \).

Proof. Let \(f \) and \(g \) be minimum signed dominating functions of \(G + A \) and \(G \), respectively, and let \(f^{-1}(a) \) and \(g^{-1}(a) \) denote the reversed imagines of \(a \) under \(f \) and \(g \). Since \(\gamma_s(G + A) < \gamma_s(G) \), \(|f^{-1}(1)| \leq |g^{-1}(1)| - 1 \) (equivalently, \(|f^{-1}(-1)| \geq |g^{-1}(-1)| + 1\)). Hence \(\gamma_s(G + A) = |f^{-1}(1)| - |f^{-1}(-1)| \leq |g^{-1}(1)| - |g^{-1}(-1)| - 2 = \gamma_s(G) - 2 \). \(\square \)
3. The signed reinforcement numbers of stars, paths and cycles

Since \(V(K_{1,n-1}) = L(K_{1,n-1}) \cup S(K_{1,n-1}) \), by Lemmas 2.3 and 2.7, \(R_s(K_{1,n-1}) = 1 \) if \(n \geq 3 \). Hence, we have the following observation.

Observation 3.1. Let \(n \geq 3 \). Then \(R_s(K_{1,n-1}) = 1 \).

Theorem 3.2. For \(n \geq 3 \),

\[
R_s(P_n) = \begin{cases}
2, & n \equiv 2 \pmod{3} \\
1, & \text{otherwise.}
\end{cases}
\]

Proof. Denote \(V(P_n) = \{v_1, v_2, \cdots, v_n\} \).

If \(n = 3k \) or \(3k + 1 \) for some integer \(k(\geq 1) \), then

\[
\gamma_s(P_{3k} + v_1v_{3k}) = \gamma_s(C_{3k}) = k < k + 2 = \gamma_s(P_{3k})
\]

and

\[
\gamma_s(P_{3k+1} + v_1v_{3k+1}) = \gamma_s(C_{3k+1}) = k + 1 < k + 3 = \gamma_s(P_{3k+1}).
\]

This implies that \(R_s(P_n) = 1 \) if \(n \not\equiv 2(\text{mod} 3) \).

If \(n = 3k + 2 \) for some integer \(k \geq 1 \), let \(G \) be the graph obtained from \(P_{3k+2} \) by adding two edges \(v_1v_3, v_3v_{3k+2} \). Now, define a function \(f \) as follows:

\[
f(v_i) = \begin{cases}
-1, & i \equiv 1 \pmod{3} \\
1, & \text{otherwise}
\end{cases}
\]

It is an easy task to check that \(f[v_i] = 1 \) for every \(i \in [1, 3k + 2] \). So \(f \) is a SDF of \(G \). Hence, \(\gamma_s(G) \leq f(V(G)) = k < k + 2 = \gamma_s(P_{3k+2}) \). Therefore, \(R_s(P_{3k+2}) \leq 2 \).

Now we show that \(R_s(P_{3k+2}) = 2 \). If there exists some edge \(e \not\in E(P_{3k+2}) \) such that \(\gamma_s(P_{3k+2} + e) < \gamma_s(P_{3k+2}) \), then, by Lemma 2.8, \(\gamma_s(P_{3k+2} + e) \leq \gamma_s(P_{3k+2}) - 2 = k \). Since \(\Delta(P_{3k+2} + e) \leq 3 \), by Lemma 2.4, \(\gamma_s(P_{3k+2} + e) \geq \lceil \frac{3k+2}{3} \rceil = k + 1 > k \geq \gamma_s(P_{3k+2} + e) \), a contradiction. \(\square \)

Lemma 3.3. Let \(n \geq 3 \) and \(n \equiv 0 \) or \(1 \pmod{3} \). Then

\[
R_s(C_n) = \begin{cases}
0, & n = 3, 4 \\
3, & n \geq 6.
\end{cases}
\]

Proof. Denote \(V(C_n) = \{v_0, v_1, \cdots, v_{n-1}\} \) and \(E(C_n) = \{v_i v_{i+1} \mid i = 0, 1, \cdots, n-1\} \), where the "+" is under modulo \(n \). If \(n = 3 \), then \(C_n = K_3 \) and \(R_s(C_n) = R_s(K_3) = 0 \).

If \(n = 4 \), we can check that \(\gamma_s(C_4) = 2 = \gamma_s(C_4 + v_1v_3) = \gamma_s(C_4 + v_0v_2) = \gamma_s(C_4 + \{v_1v_3, v_0v_2\}) \) and hence \(R_s(C_4) = 0 \).
If \(n \geq 6 \), let \(G \) be the graph obtained from \(C_n \) by adding three edges \(v_1v_3, v_1v_5 \) and \(v_3v_5 \) and define a function \(f : V(G) \rightarrow \{-1, 1\} \) by

\[
f(v_i) = \begin{cases}
-1, & i = 2, 4 \text{ or } 3j \text{ for } j \in [2, \|\frac{n}{3}\|] \\
1, & \text{otherwise.}
\end{cases}
\]

It is an easy task to check that \(f[v_i] \geq 1 \) for any \(i \in [1, n] \). So \(f \) is a SDF of \(G \) and hence \(\gamma_s(G) \leq f(V(G)) = n - 2(\|\frac{n}{3}\| + 1) = n - 2\|\frac{n}{3}\| - 2 < n - 2\|\frac{n}{3}\| = \gamma_s(C_n) \) (Lemma 2.6 (3)). So we have \(R_s(C_n) \leq 3 \).

Next we will show that \(R_s(C_n) \geq 3 \) and so the result follows. Suppose to the contrary that there exist two edges \(e_1, e_2 \notin E(C_n) \) such that \(\gamma_s(C_n + \{e_1, e_2\}) < n - 2\|\frac{n}{3}\| = \gamma_s(C_n) \). By Lemma 2.8, \(\gamma_s(C_n + \{e_1, e_2\}) \leq \gamma_s(C_n) - 2 \).

If \(e_1, e_2 \) are independent, then \(\Delta(C_n + \{e_1, e_2\}) \leq 3 \). By Lemma 2.4, \(\gamma_s(C_n + \{e_1, e_2\}) \geq \|\frac{n}{3}\| = n - 2\|\frac{n}{3}\| = \gamma_s(C_n) \), a contradiction.

If \(e_1, e_2 \) have a common end, then \(C_n + \{e_1, e_2\} \) has precisely one vertex with maximum degree four. By Lemma 2.5, \(\gamma_s(C_n + \{e_1, e_2\}) \geq \|\frac{n-2}{3}\| \geq n - 2\|\frac{n}{3}\| - 1 = \gamma_s(C_n) - 1 \), a contradiction too.

Lemma 3.4. If \(n \equiv 2 \mod 3 \) and \(n \geq 5 \), then \(R_s(C_n) = 2 \).

Proof. Let \(V(C_n) \) and \(E(C_n) \) be defined the same as in the former proof and let \(G \) be the graph obtained by adding two edges \(v_1v_3 \) and \(v_3v_5 \). Suppose \(n = 3k + 2 \) \((k \geq 1) \). Define a function \(f : V(G) \rightarrow \{-1, 1\} \) by

\[
f(v_i) = \begin{cases}
-1, & i = 2 \text{ or } 3j + 1 \text{ for } j \in [1, k] \\
1, & \text{otherwise.}
\end{cases}
\]

It is an easy task to check that \(f[v_i] \geq 1 \) for any \(i \in [1, n] \). So \(f \) is a SDF of \(G \) and \(\gamma_s(G) \leq f(V(G)) = k < k + 2 = \gamma_s(C_n) \). Hence \(R_s(C_n) \leq 2 \).

If we can show that \(R_s(C_n) \geq 2 \), then the result follows. Suppose that there exists some edge \(e \notin E(C_n) \) such that \(\gamma_s(C_n + e) < \gamma_s(C_n) \). By Lemma 2.8, \(\gamma_s(C_n + e) \leq \gamma_s(C_n) - 2 = k \). Since \(\Delta(C_n + e) = 3 \), \(\gamma_s(C_n + e) \geq \|\frac{k}{3}\| = k + 1 \) by Lemma 2.4, a contradiction with \(\gamma_s(C_n + e) \leq k \).

From the above two lemmas, we have

Theorem 3.5. Let \(n \geq 3 \). Then

\[
R_s(C_n) = \begin{cases}
0, & n = 3, 4 \\
3, & n \equiv 0 \text{ or } 1 \mod 3 \text{ and } n \geq 6 \\
2, & n \equiv 2 \mod 3.
\end{cases}
\]
4. Wheels

A wheel is a graph obtained from a cycle by adding a new vertex such that it is adjacent with each vertex of the cycle. Let \(W_n = \{w\} \cup C_{n-1} \) denote a wheel obtained from a cycle \(C_{n-1} \) and a new vertex \(w \), called the central vertex of \(W_n \). In the following, we denote \(V(C_{n-1}) = \{v_0, v_1, \cdots, v_{n-2}\} \) and \(E(W_n) = \{wv_i, v_iv_{i+1}, i = 0, 1, \cdots, n-2\} \), where the sum is taken modulo \(n - 1 \).

First we determine the signed domination number of \(W_n \).

Lemma 4.1. For \(n \geq 4 \), \(\gamma_s(W_n) = n - 2\left\lfloor \frac{n-1}{3} \right\rfloor \).

Proof. Since we can extend a SDF of \(C_{n-1} \) to be a SDF of \(W_n \) by assigning 1 to the central vertex \(w \), \(\gamma_s(W_n) \leq \gamma_s(C_{n-1}) + 1 = n - 1 - 2\left\lfloor \frac{n-1}{3} \right\rfloor + 1 = n - 2\left\lfloor \frac{n-1}{3} \right\rfloor

In the following, we show that \(\gamma_s(W_n) \geq n - 2\left\lfloor \frac{n-1}{3} \right\rfloor \). Let \(f \) be a minimum SDF of \(W_n \) and let \(P \) and \(M \) be the set of reverse imagines of 1 and \(-1\) under \(f \), respectively. We claim that \(f(w) = 1 \), equivalently, \(w \in P \). If \(f(w) = -1 \), to guarantee \(f(v_i) \geq 1 \) for any \(i = 0, \cdots, n-2 \), \(f(v_i) = 1 \) since \(d(v_i) = 3 \). This means that \(\gamma_s(W_n) = n - 1 > n - 2\left\lfloor \frac{n-1}{3} \right\rfloor \), a contradiction.

Since \(f[v_i] = f(w) + f(v_{i-1}) + f(v_i) + f(v_{i+1}) \geq 1 \), \(f(v_{i-1}) + f(v_i) + f(v_{i+1}) \geq 0 \). Hence at most one of three consecutive vertices on \(C_{n-1} \) is assigned \(-1\) by \(f \). This implies that \(|M| \leq \frac{n-1}{2} \). So \(\gamma_s(W_n) = n - 2|M| \geq n - 2\left\lfloor \frac{n-1}{3} \right\rfloor \). \(\square \)

Theorem 4.2.

1. \(R_s(W_4) = 0 \).

2. If \(n \geq 5 \),

\[
R_s(W_n) = \begin{cases}
2, & n \equiv 1 \pmod{3} \\
1, & \text{otherwise}
\end{cases}
\]

Proof. (1) It follows directly from \(W_4 = K_4 \) and \(R_s(K_n) = 0 \) for any \(n \geq 2 \).

(2) If \(n = 3k \) (\(k \geq 2 \)) or \(n = 3k+2 \) (\(k \geq 1 \)), then, by Lemma 4.1, \(\gamma_s(W_n) = n - 2\left\lfloor \frac{n-1}{3} \right\rfloor = k + 2 \). Now, we add an edge \(v_0v_2 \) to \(W_n \) and define a function \(g : V(W_n + v_0v_2) \rightarrow \{-1, 1\} \) as follows:

\[
g(x) = \begin{cases}
-1, & \text{if } x = v_i \text{ and } i = 1, n - 2 \text{ or } 3j \text{ for } j \in [1, \left\lfloor \frac{n}{3} \right\rfloor - 2] \\
1, & \text{otherwise}
\end{cases}
\]

It is an easy task to check that \(g \) is a SDF of \(W_n + v_0v_2 \). Hence \(\gamma_s(W_n + v_0v_2) \leq g(V(W_n)) = n - 2\left\lfloor \frac{n}{3} \right\rfloor = k < k + 2 = \gamma_s(W_{3k}) \). So \(R_s(W_n) = 1 \).

If \(n = 3k + 1 \) (\(k \geq 2 \)), then, by Lemma 4.1, \(\gamma_s(W_{3k+1}) = 3k + 1 - 2\left\lfloor \frac{3k+1-1}{3} \right\rfloor = k + 1 \). Then we can add two edges \(v_0v_2, v_2v_4 \) to \(W_n \) and define a SDF \(g \) of \(W_n + \{v_0v_2, v_2v_4\} \) as
follows:

$$g(x) = \begin{cases}
-1, & \text{if } x = v_i \text{ and } i = 1, 3 \text{ or } 3i - 1 \text{ for } i \in [2, k] \\
1, & \text{otherwise}
\end{cases}$$

Hence

$$\gamma_s(W_{3k+1} + \{v_0v_2, v_2v_4\}) \leq g(V(W_n)) = 3k + 1 - 2(k + 1) = k - 1 < k + 1 = \gamma_s(W_{3k+1}).$$

So $$R_s(W_{3k+1}) \leq 2.$$

In the following, we will prove that $$R_s(W_{3k+1}) \geq 2.$$ Suppose to the contrary that there exists an edge $$e \notin E(W_n)$$ such that $$\gamma_s(W_{3k+1} + e) < \gamma_s(W_{3k+1}) = k + 1.$$

Let $$\phi$$ be a minimum SDF of $$W_{3k+1} + e$$ and let $$P$$ and $$M$$ be the reverse imaginaries of 1 and −1 under $$\phi$$, respectively. Then,

$$\begin{cases}
|P| + |M| = 3k + 1 \\
|P| - |M| = \gamma_s(W_{3k+1} + e) \leq k
\end{cases}$$

Since $$|M|$$ and $$|P|$$ are integers, the equation array implies that

$$\begin{cases}
|M| \geq k + 1 \\
|P| \leq 2k
\end{cases}$$

With a same reason with $$f(w) = 1$$ in the proof of Lemma 4.1, $$\phi(w) = 1.$$ Then $$M \subseteq V(C_{3k}).$$ Since $$|M| \geq k + 1,$$ there are three consecutive vertices $$v_{i-1}, v_i, v_{i+1}$$ on $$C_{3k}$$ such that two of them are in $$M.$$

If the two members of $$\{v_{i-1}, v_i, v_{i+1}\} \cap M$$ are consecutive on $$C_{3k},$$ without loss of generality, suppose $$v_{i-1}, v_i \in M.$$ Then, to guarantee that $$\phi[v_{i-1}] \geq 1, \phi[v_i] \geq 1, d(v_{i-1}) \geq 4$$ and $$d(v_i) \geq 4.$$ This is impossible since $$v_{i-1}, v_i$$ can not be the two ends of the new adding edge $$e.$$ Hence we must have $$v_{i-1}, v_{i+1} \in M.$$

To guarantee $$\phi[v_i] \geq 1, d(v_i) = 4$$ and $$\phi(v_i) = 1.$$ This means that $$v_i$$ must be an end of $$e.$$ Suppose $$e = v_i v_m.$$ Then $$\phi(v_m) = 1.$$ Now we compute the number of edges between $$M$$ and $$P - \{w\}$$ with two methods. Let $$P' = P - \{w\}.$$

Since, for each $$x \in M,$$ $$d(x) = 3$$ and $$\phi(x) = -1 + \phi(w) + \phi(N(x) \setminus \{w\}) \geq 1, \phi(N(x) \setminus \{w\}) \geq 1.$$ So, there are two edges from $$x$$ to the vertices in $$P',$$ this means $$e(x, P') = 2.$$ Hence $$e(M, P') = 2|M| \geq 2(k + 1).$$

Since, for each $$x \in P - \{w, v_i, v_m\},$$ $$d(x) = 3$$ and $$\phi(x) = 1 + 1 + \phi(N(x) \setminus \{w\}) \geq 1, \phi(N(x) \setminus \{w\}) \geq -1.$$ Hence there is at most one edge from $$x$$ to the vertices in $$M,$$ which means that $$e(x, M) \leq 1$$ for each $$x \in V(P - \{w, v_i, v_m\}).$$ For $$v_i$$ and $$v_m,$$ there are at most 2 edges from $$v_i$$ or $$v_m$$ to vertices in $$M.$$ So,

$$e(P', M) \leq |P - \{w, v_i, v_m\}| + 4 \leq 2k - 3 + 4 = 2k + 1 < 2(k + 1) \leq e(M, P'),$$

a contradiction. □
5. Trees

Lemma 5.1. For any tree T with order $n \geq 3$, $R_s(T) \leq 3$.

Proof. If $\gamma_s(T) = n$, then $R_s(T) = 1 < 3$ by Lemma 2.7.

Now suppose $\gamma_s(G) < n$. Then $T \neq K_{1,n-1}$. Hence there exist two leaves u_1, v_1 such that they have two different support vertices u_2 and v_2, respectively.

If $L(T) = \{u_1, v_1\}$, then $T = P_n$ and so $R_s(T) \leq 2$ by Theorem 3.2.

If $L(T) \neq \{u_1, v_1\}$, let w_1 be another leaf of T. Then there is at least one of u_2, v_2 which is not adjacent with w_1. Without loss of generality, assume $u_2w_1 \notin E(T)$. Let f be a minimum SDF of T. By Lemma 2.2, $f(u_i) = f(v_i) = 1, i = 1, 2$ and $f(w_1) = 1$. Let $S = \{u_1v_1, u_2w_1\}$ if $u_2v_2 \in E(G)$ and $S = \{u_1v_1, u_2v_2, u_2w_1\}$ if $u_2v_2 \notin E(G)$. We can easily modify f to be a SDF g of $T + S$ as follows.

\[
g(x) = \begin{cases}
-1, & x = u_1 \\
f(x), & x \in V(T) - \{u_1\}
\end{cases}
\]

Then $\gamma_s(T + S) \leq g(V(T + S)) = \gamma_s(T) - 2 < \gamma_s(T)$ implies that $R_s(T) \leq 3$. □

In fact, the upper bound of the signed reinforcement number of trees given here is not sharp. In the following, we will give a sharp bound for $R_s(T)$.

Lemma 5.2. Let f be a minimum SDF of a tree T. If there exists a support vertex v with $f[v] \geq 3$, then $R_s(T) = 1$.

Proof. Let u, w be two leaves of T such that at least one of them is adjacent with v in T. Then uw is the desired edge to guarantee that $\gamma_s(T + uw) < \gamma_s(T)$. □

Lemma 5.3. Let f be a minimum SDF of a tree T. If there exists a support vertex v with $f[v] \geq 2$, then $R_s(T) \leq 2$.

Proof. If T is a star, then the result is clearly true. Now suppose T is not a star. Then we can choose two leaves u, w of T such that $uw \in E(T)$ and $uw \notin E(T)$. Hence uw, vw are two edges to guarantee that $\gamma_s(T + \{uw, vw\}) < \gamma_s(T)$. So, $R_s(T) \leq 2$. □

Lemma 5.4. Let T' be a tree obtained from a tree T ($|V(T)| \geq 3$) by adding an edge joining a leaf of T with a leaf of a path P_3. Then $R_s(T') \leq R_s(T)$.

Proof. Let v be a leaf of T and let u be its support vertex. Let $P_3 = x_1x_2x_3$ and let T' be a tree obtained from $T \cup P_3$ by adding an edge x_3v. It is an easy task to check that $\gamma_s(T') = \gamma_s(T) + 1$. Now suppose $R_s(T) = r$ and S is a set of edges with $|S| = r$ such that $\gamma_s(T + S) \leq \gamma_s(T) - 2$ (by Lemma 2.8). By Lemma 5.1, $r \leq 3$.

Let f be a minimum SDF of $T + S$. Then $f(V(T)) = \gamma_s(T + S)$.

Signed reinforcement numbers of certain graphs
If \(v \) is not incident with any edge in \(S \), then \(v \) is a leaf of \(T+S \), too. Hence \(f(v) = f(u) = 1 \). We can easily extend \(f \) to be a SDF, say \(g \), of \(T'+S \) by defining \(g(x_1) = g(x_2) = 1 \) and \(g(x_3) = -1 \) and \(g(x) = f(x) \) for the other vertices. So \(\gamma_s(T'+S) \leq \gamma_s(T+S) + 1 \leq \gamma_s(T) - 2 + 1 = \gamma_s(T') - 2 \). This implies that \(R_s(T') \leq |S'| = r = R_s(T) \).

Now we suppose that \(v \) is incident with some edges, denoted \(vu_1, \ldots, vu_t \) in \(S \).

If \(f[v] \geq 2 \), then we can extend \(f \) to be a SDF of \(T'+S \) the same as the above case and so the result is valid. So we assume that \(f[v] = 1 \) in the following.

Case 1. \(f(v) = 1 \).

If \(f(u) = 1 \), then \(f(u_1) + \cdots + f(u_t) = -1 \). Let \(S' = (S - \{vu_1, \ldots, vu_t\}) \cup \{x_1u_1, \cdots, x_1u_t\} \). Then we can define a SDF \(g \) of \(T'+S' \) as follows:

\[
g(x) = \begin{cases}
-1, & x = x_3 \\
1, & x = x_1, x_2 \\
f(x), & x \in V(T)
\end{cases}
\]

So \(\gamma_s(T'+S') \leq g(V(T'+S')) \leq \gamma_s(T+S) + 1 \leq \gamma_s(T) - 1 = \gamma_s(T') - 2 \). This implies that \(R_s(T') \leq |S'| = |S| = R_s(T) \).

If \(f(u) = -1 \), then \(f(u_1) + \cdots + f(u_t) = 1 \). Let \(S' = (S - \{vu_1, \ldots, vu_t\}) \cup \{x_1u_1, \cdots, x_1u_t\} \). We also can define a SDF \(g \) of \(T'+S' \) as follows:

\[
g(x) = \begin{cases}
-1, & x = x_2 \\
1, & x = x_1, x_3 \\
f(x), & x \in V(T)
\end{cases}
\]

So \(\gamma_s(T'+S') \leq g(V(T'+S')) \leq \gamma_s(T+S) + 1 \leq \gamma_s(T) - 1 = \gamma_s(T') - 2 \) implies that \(R_s(T') \leq |S'| = |S| = R_s(T) \).

Case 2. \(f(v) = -1 \).

If \(f(u) = 1 \), then \(f(u_1) + \cdots + f(u_t) = 1 \). Let \(S' = (S - \{vu_1, \ldots, vu_t\}) \cup \{x_1u_1, \cdots, x_1u_t\} \). Then we can extend \(f \) to be a SDF \(g \) of \(T'+S' \) the same as the case \(f(v) = 1 \) and \(f(u) = -1 \) and so the result is valid.

If \(f(u) = -1 \), then \(f(u_1) + \cdots + f(u_t) \geq 3 \). Since \(t \leq r \leq 3 \), \(t = 3 \) and \(f(u_1) = f(u_2) = f(u_3) = 1 \). Let \(S' = (S - \{vu_1\}) \cup \{x_1u_1\} \) and define

\[
g(x) = \begin{cases}
-1, & x = x_2 \\
1, & x = x_1, x_3 \\
f(x), & x \in V(T)
\end{cases}
\]

Then \(g \) is a SDF of \(T'+S' \) and \(\gamma_s(T'+S') \leq g(V(T'+S')) \leq \gamma_s(T+S) + 1 \leq \gamma_s(T) - 1 = \gamma_s(T') - 2 \). This also implies that \(R_s(T') \leq |S'| = |S| = R_s(T) \).

Theorem 5.5. For any tree \(T \) of order \(n \geq 2 \), \(R_s(T) \leq 2 \).
\textit{Proof.} We prove the result by induction on the order of \(T \). Since the result is true for \(T = K_2 \), we assume that \(n \geq 3 \). If \(n = 3 \), then, by Theorem 3.2, \(R_s(T) = 1 \) and the result is true. Now assume that \(n \geq 4 \) and the result is true for any tree with order less than \(n \).

Let \(T \) be a tree with \(|V(T)| = n \) and let \(f : V(T) \to \{-1,1\} \) be a minimum SDF of \(T \). Then \(f(V(T)) = \gamma_s(T) \) and \(f(v) = 1 \) for any \(v \in L(T) \cup S(T) \) by Lemma 2.2.

Let \(P_m = v_1v_2\cdots v_m \) be a longest path of \(T \).

If \(d(v_2) \geq 3 \), then there are at least two leaves adjacent with \(v_2 \) since \(P_m \) is a longest path of \(T \). Since \(f(v_2) = 1 \), \(f[v_2] \geq 3 - 1 = 2 \). By Lemma 5.3, \(R_s(T) \leq 2 \) and so the result is true. Hence, in the following, we suppose \(d(v_2) = 2 \).

\textbf{Case 1.} \(d(v_3) \geq 3 \).

\textbf{Case 1.1.} If \(v_3 \) is adjacent with a leaf \(x \), then \(f(x) = f(v_3) = 1 \). So \(f[v_2] \geq 3 \). By Lemma 5.2, \(R_s(T) = 1 \).

\textbf{Case 1.2.} If \(v_3 \) is not adjacent with any leaf of \(T \), since \(P_m \) is a longest path of \(T \), each neighbor of \(v_3 \) other than \(v_4 \) is a support vertex of \(T \). Since \(d(v_2) = 2 \), we can assume that each component of \(T - \{v_3\} \) not containing \(v_4 \) is isomorphic to \(K_2 \). If \(f(v_3) = 1 \), then \(f[v_2] \geq 3 \). By Lemma 5.2, \(R_s(T) = 1 \). Now we assume \(f(v_3) = -1 \).

Let \(y_1y_2 \) be a component of \(T - \{v_3\} \) other than \(v_1v_2 \) with \(y_2v_3 \in E(T) \). Let \(S = \{v_1v_3, y_1v_3\} \). Define a function \(g : V(T + S) \to \{-1,1\} \) as follows:

\[g(x) = \begin{cases}
-1, & x = y_1, v_1 \\
1, & x = v_3 \\
f(x), & \text{otherwise}
\end{cases} \]

It is an easy task to check that \(g[x] \geq 1 \) for any vertex \(x \in V(T + S) \) and hence \(g \) is a SDF of \(T + S \). So \(\gamma_s(T + S) \leq g(V(T + S)) = \gamma_s(T) - 2 \) which implies that \(R_s(T) \leq |S| = 2 \).

\textbf{Case 2.} \(d(v_3) = 2 \).

\textbf{Case 2.1.} If \(f(v_3) = 1 \), then \(f[v_2] \geq 3 \) and so \(R_s(T) = 1 \) by Lemma 5.2.

\textbf{Case 2.2.} If \(f(v_3) = -1 \), then, to guarantee \(f[v_3] \geq 1 \), \(f(v_4) \) must be 1.

If \(d(v_4) = 2 \), then, to guarantee \(f[v_4] \geq 1 \), \(f(v_5) = 1 \). Let \(T' = T - \{v_1, v_2, v_3\} \). By the inductive hypothesis, \(R_s(T') \leq 2 \). Since \(\{v_1, v_2, v_3\} \) induce a path \(P_3 \), by Lemma 5.4, \(R_s(T) = R_s(T' + P_3) \leq R_s(T') \leq 2 \).

Now assume that \(d(v_4) \geq 3 \).

If \(v_4 \) is a support vertex and \(w \) is a leaf adjacent with \(v_4 \), then \(f(w) = f(v_4) = 1 \). Let \(S = \{v_1v_3, vwv_3\} \). We can define a SDF \(g \) of \(T + S \) as follows:

\[g(x) = \begin{cases}
-1, & x = w, v_1 \\
1, & x = v_3 \\
f(x), & \text{otherwise}
\end{cases} \]

So \(\gamma_s(T + S) \leq g(V(T + S)) = \gamma_s(T) - 2 \) implying that \(R_s(T) \leq 2 \).
If \(v_4 \) is adjacent with a support vertex \(y \) such that \(N(y) - \{ v_4 \} \) are leaves of \(T \), then \(f(y) = 1 \). Since \(f(v_4) = 1 \) and the value of any leaf assigned by \(f \) is 1, \(f[y] \geq 3 \). By Lemma 5.2, we have \(R_s(T) = 1 \).

By the above proofs, we can assume that: (i) each component of \(T - \{ v_4 \} \) not containing \(v_5 \) is isomorphic to \(P_3 \) with an end adjacent with \(v_4 \); (ii) the value of the vertex adjacent with \(v_4 \) assigned by \(f \) is \(-1\). By this assumption, to guarantee \(f[v_4] \geq 1 \), there is exactly one such component, that means \(d(v_4) = 2 \), contradicts with the assumption \(d(v_4) \geq 3 \).

Remark 5.6. The upper bound \(R_s(T) \leq 2 \) is sharp since \(R(P_{3k+2}) = 2 \), \(k \geq 1 \).

References

